Part Number Hot Search : 
W83321G AN3275SB 50150 HMC584 SAM52701 319217A P3055 AH180
Product Description
Full Text Search
 

To Download VN750-E Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 VN750-E / VN750S-E VN750PT-E / VN750B5-E
HIGH SIDE DRIVER
Table 1. General Features
Type VN750-E VN750B5-E VN750S-E VN750PT RDS(on) IOUT VCC
Figure 1. Package
60 m
6A
36 V
SO-8 CMOS COMPATIBLE INPUT ON STATE OPEN LOAD DETECTION s OFF STATE OPEN LOAD DETECTION s SHORTED LOAD PROTECTION s UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN s PROTECTION AGAINST LOSS OF GROUND s VERY LOW STAND-BY CURRENT
s s s s
PENTAWATT
P2PAK
PPAK
REVERSE BATTERY PROTECTION (*) IN COMPLIANCE WITH THE 2002/95/EC EUROPEAN DIRECTIVE DESCRIPTION The VN750-E, VN750S-E, VN750PT-E, VN750B5-E are a monolithic device designed in STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active VCC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table).
Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. The device detects open load condition both is on and off state. Output shorted to VCC is detected in the off state. Device automatically turns off in case of ground pin disconnection.
Table 2. Order Codes
Package PENTAWATT SO-8 P PAK PPAK
Note: (*) See application schematic at page 9.
2
Tube VN750-E VN750S-E VN750B5-E VN750PT-E -
Tape and Reel
VN750STR-E VN750B5TR-E VN750PTTR-E
Rev. 1 October 2004 1/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Figure 2. Block Diagram
VCC
VCC CLAMP
OVERVOLTAGE DETECTION UNDERVOLTAGE DETECTION
GND Power CLAMP
INPUT LOGIC
DRIVER OUTPUT CURRENT LIMITER
STATUS
ON STATE OPENLOAD DETECTION OVERTEMPERATURE DETECTION
OFF STATE OPENLOAD AND OUTPUT SHORTED TO VCC DETECTION
Table 3. Absolute Maximum Ratings
Symbol VCC - VCC - Ignd IOUT - IOUT IIN ISTAT Parameter DC Supply Voltage Reverse DC Supply Voltage DC Reverse Ground Pin Current DC Output Current Reverse DC Output Current DC Input Current DC Status Current Electrostatic Discharge (Human Body Model: R=1.5K; C=100pF) VESD - INPUT - STATUS - OUTPUT - VCC Maximum Switching Energy (L=1.8mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=9A) Maximum Switching Energy (L=2.46mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=9A) Power Dissipation TC=25C Junction Operating Temperature Case Operating Temperature Storage Temperature 4000 4000 5000 5000 100 138 4.2 60 60 Internally Limited - 40 to 150 - 55 to 150 138 60 V V V V mJ mJ W C C C SO-8 Value PENTAWATT P2PAK 41 - 0.3 - 200 Internally Limited -6 +/- 10 +/- 10 PPAK Unit V V mA A A mA mA
EMAX EMAX Ptot Tj Tc Tstg
2/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins
VCC OUTPUT OUTPUT VCC
5
5
4
8
1
N.C. STATUS INPUT GND
4 3 2 1
OUTPUT STATUS VCC INPUT GND
SO-8
PPAK / P2PAK
PENTAWATT
Connection / Pin Status Floating X To Ground
N.C. X X
Output X
Input X Through 10K resistor
Figure 4. Current and Voltage Conventions
IS VF IIN INPUT ISTAT STATUS GND VIN VSTAT IGND VOUT OUTPUT IOUT VCC
VCC
Table 4. Thermal Data
Symbol Rthj-case Rthj-lead Rthj-amb Parameter Thermal Resistance Junction-case Thermal Resistance Junction-lead Max Max S0-8 30 93 (1) 82 (2) Value PENTAWATT P2PAK 2.1 2.1 62.1 52.1 (3) 62.1 37 (4) PPAK 2.1 77.1 (3) 44 (4) Unit C/W C/W C/W C/W
Thermal Resistance Junction-ambient Max
(1) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35m thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. (2) When mounted on a standard single-sided FR-4 board with 2cm2 of Cu (at least 35m thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. (3) When mounted on a standard single-sided FR-4 board with 0.5cm 2 of Cu (at least 35m thick). Horizontal mounting and no artificial air flow. (4) When mounted on a standard single-sided FR-4 board with 6cm2 of Cu (at least 35m thick). Horizontal mounting and no artificial air flow.
3/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
ELECTRICAL CHARACTERISTICS (8VSymbol VCC VUSD VUSDhyst VOV RON Parameter Operating Supply Voltage Undervoltage Shut-down Undervoltage Shut-down Hysteresis Overvoltage Shut-down On State Resistance IOUT=2A; Tj=25C; VCC>8V IOUT=2A; VCC>8V Off State; VCC=13V; VIN=VOUT=0V IS Supply Current Off State; VCC=13V; VIN=VOUT=0V; 36 (#) 10 10 2 0 -75 (#) 60 120 25 20 3.5 50 0 5 3 Test Conditions Min. 5.5 3 Typ. 13 4 0.5 Max. 36 5.5 Unit V V V V m m A A mA A A A A
Tj=25C
On State; VCC=13V; VIN=5V; IOUT=0A VIN=VOUT=0V VIN=0V; VOUT=3.5V VIN=VOUT=0V; VCC=13V; Tj =125C VIN=VOUT=0V; VCC=13V; Tj =25C
IL(off1) IL(off2) IL(off3) IL(off4)
Off State Output Current Off State Output Current Off State Output Current Off State Output Current
Table 6. Switching (VCC =13V)
Symbol td(on) td(off) dVOUT/ dt(on) dVOUT/ dt(off) Parameter Turn-on Delay Time Turn-off Delay Time Turn-on Voltage Slope Turn-off Voltage Slope Test Conditions RL=6.5 from VIN rising edge to VOUT=1.3V RL=6.5 from VIN falling edge to VOUT=11.7V RL=6.5 from VOUT=1.3V to VOUT=10.4V RL=6.5 from VOUT=11.7V to VOUT=1.3V Min. Typ. 40 30 (#) (#) Max. Unit s s V/s V/s
Table 7. Input Pin
Symbol VIL IIL VIH IIH Vhyst VICL Parameter Input Low Level Low Level Input Current Input High Level High Level Input Current Input Hysteresis Voltage Input Clamp Voltage IIN=1mA IIN=-1mA VIN=3.25V 0.5 6 VIN=1.25V 1 3.25 Test Conditions Min. Typ. (#) (#) (#) (#) (#) 6.8 -0.7 8 10 Max. 1.25 Unit V A V A V V V
Note: (#) See relative diagram
4/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
ELECTRICAL CHARACTERISTICS (continued) Table 8. VCC - Output Diode
Symbol VF Parameter Forward on Voltage Test Conditions -IOUT=1.3A; Tj=150C Min. Typ. Max. 0.6 Unit V
Table 9. Status Pin
Symbol VSTAT ILSTAT CSTAT VSCL Parameter Test Conditions Status Low Output Voltage ISTAT=1.6mA Status Leakage Current Normal Operation; VSTAT=5V Status Pin Input Normal Operation; VSTAT=5V Capacitance ISTAT=1mA Status Clamp Voltage ISTAT=-1mA Min Typ (#) (#) Max 0.5 10 100 6 6.8 -0.7 8 Unit V A pF V V
Table 10. Protections (see note 1)
Symbol TTSD TR Thyst tSDL Ilim Vdemag Parameter Shut-down Temperature Reset Temperature Thermal Hysteresis Status delay in overload condition Current limitation Turn-off Output Clamp Voltage Test Conditions Min 150 135 7 Typ 175 15 20 6 9 15 15 VCC-41 VCC-48 VCC-55 Max 200 Unit C C C s A A V
Tj>Tjsh 9VNote: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles.
Table 11. Openload Detection
Symbol IOL tDOL(on) Parameter Openload ON State Detection Threshold Openload ON State Detection Delay Openload OFF State Voltage Detection Threshold Openload Detection Delay at Turn Off Test Conditions VIN=5V IOUT=0A Min 50 Typ (#) Max 200 200 Unit mA s
VOL
VIN=0V
1.5
(#)
3.5
V s
tDOL(off)
1000
Note: (#) See relative diagram
5/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Figure 5.
OPEN LOAD STATUS TIMING (with external pull-up) IOUT< IOL VOUT > VOL VIN VIN OVERTEMP STATUS TIMING Tj > Tjsh
VSTAT
VSTAT
tDOL(off)
tDOL(on)
tSDL
tSDL
Table 12. Truth Table
CONDITIONS Normal Operation INPUT L H L H H L H L H L H L H L H OUTPUT L H L X X L L L L L L H H L H STATUS H H H (Tj < TTSD) H (Tj > TTSD) L H L X X H H L H H L
Current Limitation
Overtemperature Undervoltage Overvoltage Output Voltage > VOL Output Current < IOL
Figure 6. Switching time Waveforms
VOUTn 90% 80%
dVOUT/dt(on)
dVOUT/dt(off)
10% t VINn
td(on)
td(off)
t
6/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Table 13. Electrical Transient Requirements On VCC Pin
ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E I C C C C C C I -25 V +25 V -25 V +25 V -4 V +26.5 V II -50 V +50 V -50 V +50 V -5 V +46.5 V TEST LEVELS III -75 V +75 V -100 V +75 V -6 V +66.5 V TEST LEVELS RESULTS II III C C C C C E C C C C C E IV -100 V +100 V -150 V +100 V -7 V +86.5 V Delays and Impedance 2 ms 10 0.2 ms 10 0.1 s 50 0.1 s 50 100 ms, 0.01 400 ms, 2
IV C C C C C E
CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.
7/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Figure 7. Waveforms
NORMAL OPERATION INPUT LOAD VOLTAGE STATUS UNDERVOLTAGE VCC VUSD INPUT LOAD VOLTAGE STATUS undefined VUSDhyst
OVERVOLTAGE VCCVOL VOL VCC>VOV
OPEN LOAD without external pull-up INPUT LOAD VOLTAGE STATUS
Tj INPUT LOAD CURRENT STATUS
TTSD TR
OVERTEMPERATURE
8/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Figure 8. Application Schematic
+5V
+5V
Rprot STATUS
VCC
Dld C Rprot INPUT OUTPUT
GND
RGND VGND DGND
GND PROTECTION REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND 600mV / (IS(on)max). 2) RGND (-VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1k) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of
the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table.
C I/Os PROTECTION:
If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the C I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of C and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of C I/Os. -VCCpeak/Ilatchup Rprot (VOHC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup 20mA; VOHC 4.5V 5k Rprot 65k. Recommended Rprot value is 10k.
9/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
OPEN LOAD DETECTION IN OFF STATE
Off state open load detection requires an external pull-up resistor (RPU) connected between OUTPUT pin and a positive supply voltage (VPU) like the +5V line used to supply the microprocessor. The external resistor has to be selected according to the following requirements: 1) no false open load indication when load is connected: in this case we have to avoid VOUT to be higher than VOlmin; this results in the following condition VOUT=(VPU/(RL+RPU))RLFigure 9. Open Load detection in off state
V batt.
VPU
VCC RPU INPUT DRIVER + LOGIC OUT + R STATUS VOL RL IL(off2)
GROUND
10/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Figure 10. Off State Output Current
IL(off1) (uA)
3 2.5 2 1.5 4 1 3 0.5 0 -0.5 -1 -50 -25 0 25 50 75 100 125 150 175 2
Figure 11. High Level Input Current
Iih (uA)
7
6
Off state Vcc=36V Vin=Vout=0V
Vin=3.25V
5
1
0 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Figure 12. Input Clamp Voltage
Vicl (V)
8 7.8
Figure 14. Status Leakage Current
Ilstat (uA)
0.05
Iin=1mA
7.6 7.4 7.2 7 6.8 6.6 6.4 6.2 6 -50 -25 0 25 50 75 100 125 150 175
0.04
Vstat=5V
0.03
0.02
0.01
0 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Figure 13. Status Low Output Voltage
Vstat (V)
0.6
Figure 15. Status Clamp Voltage
Vscl (V)
8 7.8
0.5
Istat=1mA
7.6
Istat=1.6mA
0.4 7.4 7.2 0.3 7 6.8 0.2 6.6 6.4 6.2 0 -50 -25 0 25 50 75 100 125 150 175 6 -50 -25 0 25 50 75 100 125 150 175
0.1
Tc (C)
Tc (C)
11/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Figure 16. On State Resistance Vs Tcase
Ron (mOhm)
140
Figure 17. On State Resistance Vs VCC
Ron (mOhm)
120 110
120
100
Iout=2A Vcc=8V; 13V; 36V
Iout=2A
100
Tc= 150C
90 80
80
Tc= 125C
70 60 50
60
40
Tc= 25C
40
20 30 0 -50 -25 0 25 50 75 100 125 150 175 20 5 10 15 20 25
Tc= - 40C
30
35
40
Tc (C)
Vcc (V)
Figure 18. Openload On State Detection Threshold
Iol (mA)
220 200 180 160 140 120
Figure 20. Openload Off State Voltage Detection Threshold
Vol (V)
5 4.5
Vcc=13V Vin=5V
Vin=0V
4 3.5 3
100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 150 175 1.5 1 -50 -25 0 25 50 75 100 125 150 175 2.5 2
Tc (C)
Tc (C)
Figure 19. Input High Level
Vih (V)
3.6 3.4 3.2 3
Figure 21. Input Low Level
Vil (V)
2.8 2.6 2.4 2.2 2
2.8 1.8 2.6 1.6 2.4 2.2 2 -50 -25 0 25 50 75 100 125 150 175 1.4 1.2 1 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
12/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Figure 22. Turn-on Voltage Slope
dVout/dt/(on) (V/ms)
1000 900 800 700 600 500 400 300 200 100 0 -50 -25 0 25 50 75 100 125 150 175
Figure 25. Turn-off Voltage Slope
dVout/dt(off) (V/ms)
500 450
Vcc=13V Rl=6.5Ohm
400 350 300 250 200 150 100 50 0 -50 -25
Vcc=13V Rl=6.5Ohm
0
25
50
75
100
125
150
175
Tc (C)
Tc (C)
Figure 23. Overvoltage Shutdown
Vov (V)
50 48 46 44 42 40 38 36 34 32 30 -50 -25 0 25 50 75 100 125 150 175
Figure 26. ILIM Vs Tcase
Ilim (A)
20 18
Vcc=13V
16 14 12 10 8 6 4 2 0 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Figure 24. Input Hysteresis Voltage
Vhyst (V)
1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
13/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Figure 27. SO-8 Maximum turn off current versus load inductance
ILMAX (A) 100
10
A B C
1 0.1 1 L(mH)
A = Single Pulse at TJstart=150C B= Repetitive pulse at TJstart=100C C= Repetitive Pulse at TJstart=125C Conditions: VCC=13.5V VIN, IL Demagnetization Demagnetization Demagnetization Values are generated with RL=0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.
10
100
t
14/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Figure 28. PPAK, P2PAK Maximum turn off current versus load inductance
ILMAX (A) 100
10
A B C
1 0.1 1 L(mH)
A = Single Pulse at TJstart=150C B= Repetitive pulse at TJstart=100C C= Repetitive Pulse at TJstart=125C Conditions: VCC=13.5V VIN, IL Demagnetization Demagnetization Demagnetization Values are generated with RL=0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.
10
100
t
15/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
SO-8 Thermal Data Figure 29. SO-8 PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: 0.14cm2, 0.8cm2, 2cm2).
Figure 30. Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (C/W)
SO-8 at 2 pins connected to TAB
110 105 100 95 90 85 80 75 70 0 0.5 1 1.5 2 2.5
PCB Cu heatsink area (cm^2)
16/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
P2PAK Thermal Data Figure 31. P2PAK PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 60mm x 60mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: 0.97cm2, 8cm2).
Figure 32. Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (C/W)
55
Tj-Tamb=50C
50 45 40 35 30
0 2 4 6 8 10
PCB Cu heatsink area (cm^2)
17/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
PPAK Thermal Data Figure 33. PPAK PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 60mm x 60mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: 0.44cm2, 8cm2).
Figure 34. Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (C/W)
90 80 70 60 50 40 30 20 10 0 0 2 4 6 8 10
PCB Cu heatsink area (cm^2)
18/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Figure 35. SO-8 Thermal Impedance Junction Ambient Single Pulse
ZTH (C/W) 1000
100
0.5 cm2 2 cm2
10
1
0.1
0.01 0.0001 0.001 0.01 0.1 1 Time (s) 10 100 1000
Figure 36. Thermal fitting model of a single channel HSD in SO-8
Pulse calculation formula
TH
= R TH + Z THtp ( 1 - ) = tp T
where
Table 14. Thermal Parameter
Tj
R1 R2 R3 R4 R5 R6 C1 C2 C3 C4 C5 C6
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
Area/island (cm2) (C/W) (C/W) ( C/W) (C/W) (C/W) (C/W) (W.s/C) (W.s/C) (W.s/C) (W.s/C) (W.s/C) (W.s/C)
0.5 0.05 0.8 3.5 21 16 58 0.006 2.60E-03 0.0075 0.045 0.35 1.05
2
28
2
19/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Figure 37. PPAK Thermal Impedance Junction Ambient Single Pulse
ZT H (C/W) 1000
100
0.44 cm2 6 cm2
10
1
0.1 0.0001 0.001 0.01 0.1 1 T ime (s) 10 100 1000
Figure 38. Thermal fitting model of a single channel HSD in PPAK
Pulse calculation formula
TH
= R TH + Z THtp ( 1 - ) = tp T
where
Table 15. Thermal Parameter
Tj
R1 R2 R3 R4 R5 R6 C1 C2 C3 C4 C5 C6
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
Area/island (cm2) (C/W) (C/W) ( C/W) (C/W) (C/W) (C/W) (W.s/C) (W.s/C) (W.s/C) (W.s/C) (W.s/C) (W.s/C)
0.5 0.15 0.7 1.6 2 15 61 0.0006 0.0025 0.08 0.3 0.45 0.8
6
24
5
20/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Figure 39. P2PAK Thermal Impedance Junction Ambient Single Pulse
ZTH (C/W) 1000
100
0.5 cm2 6 cm2
10
1
0.1 0.0001 0.001 0.01 0.1 1 Time (s) 10 100 1000
Figure 40. Thermal fitting model of a single channel HSD in P2PAK
Pulse calculation formula
TH
= R TH + Z THtp ( 1 - ) = tp T
where
Table 16. Thermal Parameter
Tj
R1 R2 R3 R4 R5 R6 C1 C2 C3 C4 C5 C6
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
Area/island (cm2) (C/W) (C/W) ( C/W) (C/W) (C/W) (C/W) (W.s/C) (W.s/C) (W.s/C) (W.s/C) (W.s/C) (W.s/C)
0.5 0.15 0.7 0.7 4 9 37 0.0006 0.0025 0.055 0.4 2 3
6
22
5
21/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
PACKAGE MECHANICAL Table 17. SO-8 Mechanical Data
Symbol
A a1 a2 a3 b b1 C c1 D E e e3 F L M S L1 0.8 8 (max.) 1.2 3.8 0.4 4.8 5.8 1.27 3.81 4 1.27 0.6 0.65 0.35 0.19 0.25 45 (typ.) 5 6.2 0.1
millimeters Min Typ Max
1.75 0.25 1.65 0.85 0.48 0.25 0.5
Figure 41. SO-8 Package Dimensions
22/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
PACKAGE MECHANICAL Table 18. PENTAWATT (VERTICAL) Mechanical Data
Symbol
A C D D1 E F F1 G G1 H2 H3 L L1 L2 L3 L5 L6 L7 M M1 Diam. 3.65 2.6 15.1 6 4.5 4 3.85 10.05 17.85 15.75 21.4 22.5 3 15.8 6.6 2.4 1.2 0.35 0.8 1 3.2 6.6 3.4 6.8
millimeters Min Typ Max
4.8 1.37 2.8 1.35 0.55 1.05 1.4 3.6 7 10.4 10.4
Figure 42. PENTAWATT (VERTICAL) Package Dimensions
23/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
PACKAGE MECHANICAL Table 19. P2PAK Mechanical Data
Symbol
A A1 A2 b c c2 D D2 E E1 e e1 L L2 L3 L5 R V2 Package Weight 0 1.40 Gr (typ) 3.20 6.60 13.70 1.25 0.90 1.55 0.40 8 10.00 8.50 3.60 7.00 14.50 1.40 1.70 2.40
millimeters Min
4.30 2.40 0.03 0.80 0.45 1.17 8.95 8.00 10.40
Typ
Max
4.80 2.80 0.23 1.05 0.60 1.37 9.35
Figure 43. P2PAK Package Dimensions
P010R
24/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
PACKAGE MECHANICAL Table 20. PPAK Mechanical Data
Symbol
A A1 A2 B B2 C C2 D1 D E E1 e G G1 H L2 L4 R V2 Package Weight 0 Gr. 0.3 0.60 0.2 8 4.90 2.38 9.35 0.8 6.00 6.40 4.7 1.27 5.25 2.70 10.10 1.00 1.00
millimeters Min
2.20 0.90 0.03 0.40 5.20 0.45 0.48 5.1 6.20 6.60
Typ
Max
2.40 1.10 0.23 0.60 5.40 0.60 0.60
Figure 44. PPAK Package Dimensions
P032T1
25/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Figure 45. SO-8 TUBE SHIPMENT (no suffix)
B
C
A
Base Q.ty Bulk Q.ty Tube length ( 0.5) A B C ( 0.1)
All dimensions are in mm.
100 2000 532 3.2 6 0.6
Figure 46. SO-8 TAPE AND REEL SHIPMENT (suffix "TR") REEL DIMENSIONS
Base Q.ty Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max)
2500 2500 330 1.5 13 20.2 12.4 60 18.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986
Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing
W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1)
12 4 8 1.5 1.5 5.5 4.5 2
End
All dimensions are in mm.
Start Top cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min No components Components No components
26/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Figure 47. PENTAWAT TUBE SHIPMENT (no suffix)
B
C
Base Q.ty Bulk Q.ty Tube length ( 0.5) A B C ( 0.1)
All dimensions are in mm.
50 1000 532 18 33.1 1
A
27/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Figure 48. P2PAK TUBE SHIPMENT (no suffix)
B
C
Base Q.ty Bulk Q.ty Tube length ( 0.5) A B C ( 0.1)
All dimensions are in mm.
50 1000 532 18 33.1 1
A
Figure 49. P2PAK TAPE AND REEL SHIPMENT (suffix "TR")
REEL DIMENSIONS
Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max)
1000 330 1.5 13 20.2 24.4 60 30.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986
Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing
W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1)
24 4 16 1.5 1.5 11.5 6.5 2
End
All dimensions are in mm.
Start Top cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min No components Components No components
28/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Figure 50. PPAK SUGGESTED PAD LAYOUT and TUBE SHIPMENT (no suffix)
A C
B
Base Q.ty Bulk Q.ty Tube length ( 0.5) A B C ( 0.1)
All dimensions are in mm.
75 3000 532 6 21.3 0.6
3
1.8
6.7
Figure 51. PPAK TAPE AND REEL SHIPMENT (suffix "TR")
REEL DIMENSIONS
Base Q.ty Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max)
2500 2500 330 1.5 13 20.2 16.4 60 22.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986
Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing
W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1)
16 4 8 1.5 1.5 7.5 2.75 2
End
All dimensions are in mm.
Start Top cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min No components Components No components
29/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
REVISION HISTORY Table 21. Revision History
Date
Oct. 2004
Revision
1 - First Issue.
Description of Changes
30/31
VN750-E / VN750S-E / VN750PT-E / VN750B5-E
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
31/31


▲Up To Search▲   

 
Price & Availability of VN750-E

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X